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Motivation

e Neural networks are often treated as a black box

e Network dissection attempts to describe what features
individual neurons are focusing on



Network Dissection

1. ldentify a broad set of human-labeled visual concepts
2. Gather hidden variables’ response to known concepts

3. Quantify alignment of hidden variable - concept pairs



1. Identify a broad set of
human-labeled visual concepts
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e Broden dataset: Broadly
and densely labelled
dataset

metal (material) headboard (part)

e 63,305 images with
1197 visual concepts

e Concept labels are
assigned pixel-wise




2. Gather hidden variables’
response to known concepts

e For convolutional neurons, compute their activation map

e |n other words, what is the output of a particular
convolutional filter for a given image

 Threshold this activation map to convert it to a binary
activation map

Input image Network being probed
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3. Quantify alignment of hidden
variable - concept pairs

e Measure the loU between the binary activation map and
the labelled concept images

e |f activation map overlaps highly with a concept, the
neuron Is a detector for that concept

conv5 unit 79 car (object) loU=0.13




Experiments



Quantifying interpretability of
deep visual representations

e |nterpretability is quantified by how well the network
aligns with a set of human interpretable concepts

AlexNet on ImageNet
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AlexNet on Places205
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Interpretability !=
Discriminative Power

e Change the basis of the conv5 units in AlexNet to show
that the interpretability can decrease while the
discriminative power of the network stays constant
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Effect of regularization on

Interpretability

Number of unique detectors

100

B object
I part
80 r I scene
[ Imaterial
60 i I:Itexture
[ Jcolor
40
20
0
‘\\QQ) ,5(\ f?}Q’ '8& o‘s\ d\@
g &L L L KX &
» & & & ¢ S
Q0 xS
P

Figure 11. Effect of regularizations on the interpretability of CNNs.
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Other experiments

e Random initialization does not seem to affect
interpretabillity

e Widening of AlexNet showed an increase in the number of
concept detectors



Thank you



